Search results for "Volterra series"

showing 2 items of 2 documents

Spectral Approach to Equivalent Statistical Quadratization and Cubicization Methods for Nonlinear Oscillators

2003

Random vibrations of nonlinear systems subjected to Gaussian input are investigated by a technique based on statistical quadratization, and cubicization. In this context, and depending on the nature of the given nonlinearity, statistics of the stationary response are obtained via an equivalent system with a polynomial nonlinearity of either quadratic or cubic order, which can be solved by the Volterra series method. The Volterra series response is expanded in a trigonometric Fourier series over an adequately long interval T, and exact expressions are derived for the Fourier coefficients of the second- and third-order response in terms of the Fourier coefficients of the first-order, Gaussian…

Mechanical EngineeringGaussianMathematical analysisVolterra seriesTrigonometric seriessymbols.namesakeNonlinear systemMechanics of MaterialsFrequency domainsymbolsRandom vibrationFourier seriesGaussian processMathematicsJournal of Engineering Mechanics
researchProduct

Stochastic response of MDOF wind-excited structures by means of Volterra series approach

1998

Abstract The role played by the quadratic term of the forcing function in the response statistics of multi-degree-of-freedom (MDOF) wind-excited linear-elastic structures is investigated. This is accomplished by modeling the structural response as a Volterra series up to the second order and neglecting the wind-structure interaction. In order to reduce the computational effort due to the calculation of a large number of multiple integrals, required by the used approach, a recent model of the wind stochastic field is adopted.

Quadratic equationStochastic fieldForce functionControl theoryRenewable Energy Sustainability and the EnvironmentExcited stateMultiple integralMechanical EngineeringVolterra seriesApplied mathematicsMathematicsTerm (time)Civil and Structural Engineering
researchProduct